Research interests

Hierarchical Composites

The introduction of carbon nanoforms, especially carbon nanotubes (CNT), into structural composites has been limited due to challenging processing requirements. Difficulties in post-processing can be avoided by anchoring the nanoreinforcement to a parent fibre, which can be handled in convention composite procedures. CNTs can be synthesised onto reinforcing carbon fibre (CF) surfaces to improve composite performance, through improved interfacial bonding of the matrix and reinforcement.

Sourcing a suitable amount of carbon nanotube grafted carbon fibre (CNT-g-CF) for mechanical test coupons geometry has been restricted due to sensitive batch CNT synthesis, which in turn has limited development. Scaling the CNT synthesis procedure for continuous production of CNT-g-CF, without damaging the parent reinforcement structure whist using low intensity processing techniques (minimal processing of parent fibre substrate), compatible with industrial practices is critical for progression.

Structural Power Composites

Bi-phasic reinforcement of composites using a carbon aerogel monolith (CAG) to further develop multifunctional composites, with comparable mechanical performance to traditional carbon fibre reinforced composites, as a structural power material have shown promising results.

The development of such a structural power component, which stores electricity but acts as an integral mechanical structure, for example the shell of a car stores energy which removes the requirement to have a separate battery, reduces weight without reducing function. Structural power composites are expected to impact everyday life as we seek to generate, store and consume energy differently.

To develop this technology is challenging and requires the expertise and collaboration of multitude of skill-sets individuals from chemists to aeronautical engineers.